



#### **Treatment of Amyloidosis**

#### Speaker Stefan Schönland, MD

University Hospital Heidelberg, University Heidelberg Department of Internal Medicine V (Haematology/Oncology/Rheumatology) Amyloidosis Center Stem Cell Transplant Unit (autologous, allogeneic, CAR T cell therapies)

11.02.2020 17:00



Co-funded by the Health Programme of the European Union



Advisory Boards

Janssen, Prothena, Takeda

• Travel and congress participation grants

Janssen, Prothena, Celgene, Binding Site, Jazz

• Honoria

Janssen, Celgene, Pfizer

• Research support

Sanofi, Celgene, Janssen



Osterior State (State) (Sta





- **1. Diagnosis and Staging of AL Amyloidosis**
- 2. Choices of first-line treatment
- 3. Impact of clonal markers





## Amyloidoses are protein misfolding and deposition disorders



- local systemic
- hereditary acquired
- associated with "aging"
- All organs might be involved
- Local amyloid deposition in
  - Alzheimer, Parkinson, Huntington and Prion diseases
  - Diabetes mellitus
- Underlying conditions in systemic amyloidosis are
  - chronic inflammation
  - clonal bone marrow disease
  - genetic diseases

## • Causes of misfolding or deposition are not well understood

- Overproduction and
- Mutations or other modifications of the precursor protein
- Impairment of protein homeostasis





| Fibril protein                                                                                       | Precursor protei                                                                | n                                                                                                                                                | Syst              | temic and/or<br>localised | Acquired<br>r or<br>hereditary           | Target organs                                                |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------------------------------------|--------------------------------------------------------------|
| AL                                                                                                   | Immunoglobulin                                                                  | light chain                                                                                                                                      |                   | S, L                      | A, H                                     | All organs, usually except CNS                               |
| AA                                                                                                   | (Apo) serum amy                                                                 | loid A                                                                                                                                           |                   | S                         | A                                        | All organs except CNS                                        |
| ATTR                                                                                                 | Transthyretin, wi                                                               | ld type                                                                                                                                          |                   | S                         | A                                        | Heart mainly in males, lung, ligaments,                      |
|                                                                                                      |                                                                                 |                                                                                                                                                  |                   |                           |                                          | tenosynovium                                                 |
|                                                                                                      | Transthyretin, va                                                               | riants                                                                                                                                           |                   | S                         | н                                        | PNS, ANS, heart, eye, leptomeninges                          |
|                                                                                                      | AApoĆIII<br>AGel                                                                | Apolipoprotein C III, variants<br>Gelsolin, variants                                                                                             | s<br>s            | H                         | Kidney<br>Kidney<br>PNS. cornea          | n na han i - h faraist - h - h - h - h - h - h - h - h - h - |
|                                                                                                      | ALys                                                                            | Lysozyme, variants                                                                                                                               | S                 | н                         | Kidney                                   |                                                              |
|                                                                                                      | ALECT2                                                                          | Leukocyte chemotactic factor-2                                                                                                                   | S                 | A                         | Kidney, primarily                        |                                                              |
|                                                                                                      | AFib                                                                            | Fibrinogen $\alpha$ , variants                                                                                                                   | S                 | н                         | Kidney, primarily                        |                                                              |
|                                                                                                      | ALys                                                                            | Cystatin C, variants                                                                                                                             | 5                 | н                         | CNS, PNS, skin                           |                                                              |
|                                                                                                      | ADan <sup>b</sup>                                                               | ADanPP, variants                                                                                                                                 | 5                 | п.<br>Ц                   | CNS<br>CNS                               |                                                              |
|                                                                                                      | AB                                                                              | AB protein precursor, wild type                                                                                                                  | 1                 | A                         | CNS                                      |                                                              |
|                                                                                                      | Ар                                                                              | Aß protein precursor, variant                                                                                                                    | L                 | Ĥ                         | CNS                                      |                                                              |
|                                                                                                      | AxSyn                                                                           | a-Synuclein                                                                                                                                      | L                 | A                         | CNS                                      |                                                              |
|                                                                                                      | ATau                                                                            | Tau                                                                                                                                              | L                 | A                         | CNS                                      |                                                              |
|                                                                                                      | PhPA                                                                            | Prion protein, wild type                                                                                                                         | L                 | Α                         | CID, fatal insomnia                      |                                                              |
|                                                                                                      |                                                                                 | Prion protein variants                                                                                                                           | L                 | н                         | CID, GSS syndrome, fatal insomnia        |                                                              |
|                                                                                                      | 151                                                                             | Prion protein variant                                                                                                                            | S                 | н                         | PNS                                      |                                                              |
|                                                                                                      | ACal                                                                            | (Pro)calcitonin                                                                                                                                  | L                 | A                         | C-cell thyroid tumours                   |                                                              |
|                                                                                                      | AIADD                                                                           | Islat amulaid polypantida <sup>c</sup>                                                                                                           | 5                 | 2                         | Islats of Langerbans insulinomas         |                                                              |
|                                                                                                      | AANE                                                                            | Atrial natriumtic factor                                                                                                                         | 1                 | A                         | Cardiac atria                            |                                                              |
|                                                                                                      | APro                                                                            | Prolactin                                                                                                                                        | ĩ                 | A                         | Pituitary prolactinomas, aging pituitary |                                                              |
|                                                                                                      | Alns                                                                            | Insulin                                                                                                                                          | L                 | A                         | latrogenic, local injection              |                                                              |
|                                                                                                      | ASPC                                                                            | Lung surfactant protein                                                                                                                          | L                 | A                         | Lung                                     |                                                              |
|                                                                                                      | ACor                                                                            | Corneodesmosin                                                                                                                                   | L                 | A                         | Cornified epithelia, hair follicles      |                                                              |
|                                                                                                      | AMed                                                                            | Lactadherin                                                                                                                                      | L                 | A                         | Senile aortic, media                     |                                                              |
|                                                                                                      | AKer                                                                            | Kerato-epithelin                                                                                                                                 | L                 | A                         | Cornea, hereditary                       |                                                              |
|                                                                                                      | ALac                                                                            | Lactofernn                                                                                                                                       | L                 | A                         | Cornea                                   |                                                              |
|                                                                                                      | AOAAP                                                                           | Odontogenic ameioblast-associated protein                                                                                                        | L                 | A                         | Vacicula cominalic                       |                                                              |
|                                                                                                      | ASent                                                                           | Enfunvitide                                                                                                                                      | 5                 | A                         | latrogenic                               |                                                              |
|                                                                                                      | ACatKe                                                                          | Cathensin K                                                                                                                                      | ĩ                 | A                         | Turoour associated                       |                                                              |
| European<br>Reference                                                                                | AEFEMP1 <sup>e</sup>                                                            | EGF-containing fibulin-like extracellular matrix<br>protein 1 (EFEMP1                                                                            | ĩ                 | A                         | Portal veins<br>Aging associated         |                                                              |
| Network  for rare or law prevale  complex diseases  Network  Hematological  Disparse (EBN EuroRhouth | *Proteins are<br>*ADan is the<br>*Also called a<br>*Not proven<br>*Eull amino a | listed, when possible, according to relationship. Thus, apol<br>product of the same gene as ABri.<br>amylin.<br>by amino acid sequence analysis. | ipoproteins are ç | grouped together, as a    | re polypeptide hormones.                 | Thursdays Webinars                                           |

Table 1. Amyloid fibril proteins and their precursors in human<sup>a</sup>.

# **Diagnosis of systemic amyloidosis**

40-80%

60%

- Biopsy is obligatory (except ATTRwt)
  - Congo Red Staining
  - Amyloid typing
    - Immunhistochemistry
    - Immunogold electron microscopy (Italy)
    - MALDI (USA, Great Britain)
- Exclusion of hereditary forms
- Screening biopsies
  - Subcutanous fat
    Sensitivity (AL) 80-90%
  - Deep rectal biopsy
  - Bone marrow biopsy





Inst. of. Pathology, Univ. HD



# **Treatment principles for systemic amyloidosis**

#### • Reduce production of amyloidogenic proteins

- Chemotherapy / Antibodies / stem cell transplantation (AL)
- Gene therapy (siRNA, anti-sense) and liver transplantation (ATTRmt)
- Anti-inflammatory treatment (AA)

#### • Prevent protein misfolding and deposition

- Tafamidis, Diflunisal (ATTR)
- EGCG (ATTR; AL)
- Doxycycline (AL, B2MG)
- Reduce amyloid load
  - Antibodies against amyloid fibrils and precursor

#### Symptomatic treatment

- Heart (AL, ATTR) and Kidney (AL, rare hereditary forms) transplantation
- Diuretics / analgetics/ nutrition





# Systemic Light Chain (AL) Amyloidosis

- Rare disease
  - Incidence: about 10 first diagnoses / Mio. / year
- Median age at first diagnosis 65 years
- Male are at higher risk than females
- Involvement of heart and kidneys are to the fore





# Systemic AL amyloidosis

#### Underlying disease, well characterized

**Clonal B cell disorder** producing free light chains (FLC)

- Plasma cell dyscrasia with monoclonal gammopathy
  - Symptomatic multiple myeloma in < 10%</li>
  - Rarely other B cell lymphoma like M. Waldenström and MCL
- Clone is usually small (<20% of the bone marrow cells) and low proliferative
- Most common form of MGCS (monoclonal gammopathy of clinical significance)





Dept. Of Hematology, Univ. HD



# Cytogenetic aberration in the plasma cells of AL Amyloidosis

High Sensitivity of iFISH after CD138 enrichment (>95%)

- Translocation t(11;14) in 50%
  - light chain only / Bence Jones type
  - Genetic stable, only few subclones, less proliferation
- High risk aberrations (t(4;14), deletion del17p) in < 10%
- Gain of 1q21 in 20%
  - higher plasma cell infiltration of the bone marrow
  - lambda light chain restriction
- Hyperdiploidy (def. by Wuillame et al.), in 11%
  - kappa light chain restriction
  - higher plasma cell infiltration
  - Higher age at diagnosis and heavy chain type



or rare or low prevalence omplex diseases

Hematological Diseases (ERN EuroBloodNet) Bochtler et al., Blood 2008 and 2011, Blood advances 2018



# Systemic AL amyloidosis

#### Pathologic agents are not well characterized

## Free light chain (FLC)

- Without heavy chain in 50% of patients
- Isotype more lambda than kappa (3:1)
- Can be reliably measured in the serum
  - Different amounts (<10 to > 1000 mg/l)
  - Lower levels associated with kidney involvement, higher with cardiac.
- Sequence patient specific









# Pathogenesis of systemic AL amyloidosis



Merlini, G. et al. (2018) Nat. Rev. Dis. Primers

# **Prognosis – Overall Survival**



Ietwork for rare or low prevalence complex diseases

uropean

eference

Ø Network Hematological Diseases (ERN EuroBloodNet) Dittrich et al., Haem 2019

#### **Plenary Paper**



#### CLINICAL TRIALS AND OBSERVATIONS

Blood 2014

#### A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis

Giovanni Palladini,<sup>1,2</sup> Ute Hegenbart,<sup>3</sup> Paolo Milani,<sup>1,2</sup> Christoph Kimmich,<sup>3</sup> Andrea Foli,<sup>1,2</sup> Anthony D. Ho,<sup>3</sup> Marta Vidus Rosin,<sup>1,2</sup> Riccardo Albertini,<sup>4</sup> Remigio Moratti,<sup>5</sup> Giampaolo Merlini,<sup>1,2,4</sup> and Stefan Schönland<sup>3</sup>



Stage I: both **proteinuria**  $\leq 5g/24h$  and **eGFR**  $\geq 50$  mL/min Stage II: either proteinuria >5g/24h or eGFR < 50 mL/min Stage III: both proteinuria >5g/24h and eGFR < 50 mL/min





# **Treatment strategies for systemic AL amyloidosis**



European Reference Network for rare ar law prevalence complex diseases

> Intervente Network Hematological Diseases (ERN EuroBloodNet)

Adapted from Weiss et al., Blood 2016



## **Treatment regimen over the years**



**Thursdays Webinars** 

Oktive Hematological Diseases (ERN EuroBloodNet)

for rare or low prevalence complex diseases

## **Definition of hematologic remission**

Organ response criteria for heart and kidney have also been established



| aCR  | IFE neg. and normal FLC ratio                                 |
|------|---------------------------------------------------------------|
| VGPR | dFLC < 40 mg/L in patients with dFLC>50 mg/L                  |
| PR   | More than 50% reduction of dFLC in patients with dFLC>50 mg/L |

European Reference Network for rare or law prevalence complex diseases

> Network Hematological Diseases (ERN EuroBloodNet)

Palladini et al. J Clin Onc 2012



# New remission criterion in dFLC < 50 mg/l low-dFLC PR (<10 mg/l)





Dittrich et al. and Milani et al. Blood 2018

Thursdays Webinars

O Network Hematological Diseases (ERN EuroBloodNet)

complex diseases

# MRD bone marrow assessment by NGF in AL amyloidosis



- Between 40% and 75% of patients in CR are reported to be MRD negative by NGF
- Patients without detectable MRD by NGF have higher probability of organ response

Paiva, et al. Blood 2011 Lisenko, et al. Cancer Med. 2016 Muchtar, et al. Blood 2017 Staron, et al. Am J Hematol 2020 Kastritis, et al. Blood Cancer J 2018 Sidana, et al. Am J Hematol 2020 Muchtar, et al. Amyloid 2020 Staron, et al. Blood Adv 2020 Kastritis, et al. Amyloid 2020

Courtesy of Giovanni Palladini, modified

#### Thursdays Webinars

# **Improvement of Prognosis since 2000**

2000-2004

2-yr OS (%) Probability of survival 60 0.8 54 42 0.6 0.4 0.2 P<0.001 0.0 72 24 48 96 120 0 Months from diagnosis No. at Risk 422 177 131 106 94 78 604 321 248 205 121 45 - 525 257 132 19 0 0

2005-2009

Muchtar et al., Blood 2017

Thursdays Webinars

2010-2014

Advanced cardiac pts have a high early mortality

Early diagnosis still a problem





# Early diagnosis can be made by hematologists

Patients with monoclonal gammopathy or smoldering Myeloma (who are only under observation)

- Albumine in urine
- NT-BNP in plasma
- FLC in serum



Network Hematological Diseases (ERN EuroBloodNet)



Amyloidosis Center HD



#### A phase III EMN trial of BMDex vs. Mdex (non-transplant patients)



| ts.) (n=53 pts.) P                           |
|----------------------------------------------|
| %) 42 (79%) 0.002<br>) 4 (8%)<br>%) 25 (47%) |
| %) 13 (24%)                                  |
|                                              |

| Variable                  | MDex        | BMDex       | Р     |
|---------------------------|-------------|-------------|-------|
| Cardiac response 3 months | 8/36 (22%)  | 8/26 (31%)  | 0.834 |
| Cardiac response 6 months | 8/36 (22%)  | 10/26 (38%) | 0.207 |
| Renal response 3 months   | 13/35 (37%) | 13/36 (36%) | 0.969 |
| Renal response 6 months   | 15/35 (43%) | 14/36 (39%) | 0.768 |



for rare or low prevalence complex diseases

Oversign State (Second State) (Se

Kastritis, et al. JCO 2020

#### **Thursdays Webinars**

# Daratumumab plus CyBorD a new standard of care (non-transplant pts)

ANDROMEDA: a randomized, open-label phase 3 study of DARA SC plus CyBorD vs CyBorD alone in newly diagnosed AL amyloidosis



Cardiac response at 6 mo



work

complex diseases

④ Network Hematological Diseases (ERN EuroBloodNet)



#### **CR/VGPR**

Kastritis, et al. 2020 EHA abstract

Dara-CyBorD

24%

**CyBorD** 

0,0

#### Thursdays Webinars

## High dose chemotherapy and autologous stem cell transplantation

t(11;14) associated with with more CR 44% versus 25%, p = 0.05





Overwork Hematological Diseases (ERN EuroBloodNet) Bochtler et al., Blood 2016



## High dose chemotherapy and autologous stem cell transplantation

t(11;14) is a favorable independent prognostic factor

|                                        | Event-free Survival |               | Overall Survival |      |                |         |
|----------------------------------------|---------------------|---------------|------------------|------|----------------|---------|
| Parameter                              | HR                  | 95%- Cl       | p-value          | HR   | 95%- CI        | p-value |
| Higher age                             | 1.01                | [0.71 - 1.42] | 0.97             | 0.74 | [0.43 - 1.27]  | 0.27    |
| Translocation t(11;14) pos.            | 0.49                | [0.29 - 0.83] | 0.008            | 0.55 | [0.26 - 1.16]  | 0.12    |
| Gain of 1q21 pos.                      | 1.12                | [0.59 - 2.13] | 0.72             | 0.60 | [0.23 – 1.52]  | 0.28    |
| Light chain (λ vs. κ)                  | 1.76                | [0.85 - 3.66] | 0.13             | 3.67 | [1.12 - 12.06] | 0.03    |
| Higher dFLC                            | 1.99                | [1.29 - 3.06] | 0.002            | 3.55 | [1.62 – 7.76]  | 0.002   |
| Mayo Score (II/III vs. I) <sup>1</sup> | 0.86                | [0.50 - 1.48] | 0.59             | 1.63 | [0.69 – 3.86]  | 0.27    |
| Lower MDRD                             | 1.08                | [0.78 - 1.49] | 0.65             | 0.92 | [0.64 - 1.33]  | 0.65    |
| Reduced melphalan dosage               | 1.35                | [0.98 - 1.87] | 0.07             | 1.50 | [1.00 - 2.22]  | 0.05    |



for rare or low prevalence complex diseases

(P) Network Hematological Diseases (ERN EuroBloodNet) Bochtler et al., Blood 2016



## **Upfront risk-adapted anti-clonal treatment for PC-AL**

Low-risk patients, eligible for ASCT (~20% of patients) High-risk patients (~20% of patients) Intermediate-risk patients, ineligible for ASCT, • Age <70 years Cardiac stage IIIb cardiac stage II-IIIa (~60% of patients) • ECOG PS < 2 • NYHA class III of IV NT-proBNP <5000 ng/L</li> ECOG PS = 4 Assess presence of potentially reversible cTnT <60 ng/L</li> contraindication to ASCT and relevant comorbidities • Left ventricular EF >45% • NYHA class < III Systolic blood pressure ≥100 mmHg Intensive monitoring during therapy • eGFR >50 mL/min per 1.73 m<sup>2</sup> unless on dialysis • Bilirubin <2 mg/dL Start with reduced doses DLCO >50% and escalate if well tolerated or sequentially introduce therapeutic agents Consider bortezomib-based induction therapy if CyBorD + daratumumab if accessible • BMPC >10% or foreseeable delay before ASCT If daratumumab is not accessible, consider: • and no contraindications to bortezomib • CyBorD. Preferred in patients with potentially reversible contraindications to ASCT and in those with eGFR <30 High rates of deep and durable hematologic responses can be achieved with mL/min per 1.73 m<sup>2</sup>. Less effective in patients whose clonal PC harbor t(11;14) bortezomib-based therapy alone BMDex. Potentially overcomes the effects of t(11;14) ASCT (melphalan 200 mg/m<sup>2</sup>), very effective in t(11;14) • MDex, LMDex, CLD. Useful in patients with contraindication to bortezomib Consider consolidation therapy if No organ response or MRD positivity



Network Hematological Diseases (ERN EuroBloodNet) Dittrich et al., Acta Haem 2020

Courtesy of Giovanni Palladini, modified



## Patterns of relapse/progression in AL amyloidosis



dFLC increase >10%

"high-risk dFLC progression," defined as an increase in dFLC that is:

- >20 mg/L,
- >20% of baseline value observed at diagnosis, and
- >50% of the value reached at best response



"High-risk dFLC progression" could be considered a trigger for rescue therapy initiation before cardiac progression, which is associated with poor survival.



O Network Hematological Diseases (ERN EuroBloodNet) Palladini et al., Blood 2017



# Lenalidomide can overcome resistance to alkylating agents and proteasome inhibitors

| Regimen                                  | Time period | Previously treated patients<br>(prior therapies) | HR                               | OR                               | Survival            |
|------------------------------------------|-------------|--------------------------------------------------|----------------------------------|----------------------------------|---------------------|
| L(Dex)<br>Dispenzieri 2007 <sup>1</sup>  | 2004-2005   | 13 (ASCT 46%)                                    | 38%                              | 15%                              | -                   |
| L(Dex)<br>Sanchorawala 2007 <sup>2</sup> | 2004-2006   | 31 (ASCT 61%, T 23%)                             | 52%                              | 51% (kidney)                     | -                   |
| CLD<br>Kumar 2012 <sup>3</sup>           | 2007-2008   | 11 (ASCT 64%, T 9%)                              | 60%<br>Including newly-diagnosed | 32%<br>Including newly-diagnosed | Median<br>38 months |
| CLD<br>Kastritis 20124                   | 2008-2011   | 13 (ASCT 31%, T 31%, B 39%)                      | 58% (CR 8%)                      | 42%                              | Median<br>29 months |
| LDex<br>Palladini 2012 <sup>5</sup>      | 2007-2009   | 24 (ASCT 29%, MDex 71%,<br>T 37%, B 100%)        | 41%                              | 6% (heart)                       | Median<br>14 months |
| CLD<br>Palladini 2013 <sup>6</sup>       | 2008-2009   | 21 (ASCT 24%, MDex 81%,<br>T 29%, B 19%)         | 62% (CR 5%, VGPR 24%)            | 19% (kidney)                     | Median<br>36 months |
| LDex<br>Mahmood 2014 <sup>7</sup>        | 2007- 2013  | 84 (ASCT 15%, T 76%, B 68%)                      | 61% (CR 20%)                     | 55% (kidney)                     | 84% @ 2y            |

#### **Recommended dose 15 mg**

1. Dispenzieri et al. Blood 2017; 2. Sanchorawala et al. Blood. 2007; 3. Kumar et al. Blood. 2012; 4. Kastritis et al. Blood 2012; 5. Palladini et al. Ann Hematol 2012; 6. Palladini et al. Haematologica. 2013; 7. Mahmood et al., Br J Haematol. 2014;



Overwork Hematological Diseases (ERN EuroBloodNet) Courtesy of Giovanni Palladini



## Daratumumab in relapsed/refractory patients

| Regimen (M/C)                          | Previously treated patients<br>(prior therapies)     | HR                        | OR                       | Median time to response (months) |
|----------------------------------------|------------------------------------------------------|---------------------------|--------------------------|----------------------------------|
| Mono <sup>1</sup>                      | 25<br>(PI 100%, IMiDs 72%, ASCT 16%)                 | 76%<br>(CR 36%, VGPR 24%) | -                        | 1                                |
| Mono <sup>2</sup>                      | 20<br>(ASCT 65%)                                     | 86%<br>(CR 33%, VGPR 53%) | -                        | 1                                |
| Mono                                   | 40                                                   | 78% (CR 14%, VGPR 64%)    | H 43%, K 18%             | 3                                |
| Combo <sup>3</sup>                     | (B 91%, I 11%, Ca 16%, L 57%, P 20%, ASCT 52%)       | 88% (CR 19%, VGPR 63%)    | H 46%, K 36%             | 2                                |
| Mono                                   | 22                                                   |                           |                          | 0.25                             |
| Prospective trial <sup>4</sup>         | (PI 73%, IMiDs 41%, ASCT 68%)                        | 50% (CK 41%, VGFK 45%)    | 11 <b>30</b> /0, K 07 /0 | 0.23                             |
| Mono⁵                                  | 72<br>(B 96%, L 44%, P 14%, ASCT 18%)                | 77% (CR 40%, VGPR 23%)    | Н 55%, К 52%             | 1                                |
| Mono<br>Combo <sup>6</sup>             | 38 (35 monotherapy)<br>(B 100%, IMiDs 47%, ASCT 40%) | 72% (CR 28%, VGPR 36%)    | Н 37%, К 59%             | 0.5                              |
| Mono                                   | 106 (PI 92%, IMiDs 73%, ASCT 23%)                    | 64% (CR/VGPR 48%)         | H 22%, K 20%             |                                  |
| Combo (+B) <sup>7</sup>                | 62 (B 95%, IMiDs 5%, ASCT 8%)                        | 66% (CR/VGPR 55%)         | H 26%, K 24%             | -                                |
| Mono<br>Prospective trial <sup>8</sup> | 40<br>(B 32%, IMiDs 59%)                             | 55% (CR 8%, VGPR 40%)     | H 25%, K 31%             | 0.25                             |
| Mono<br>Combo <sup>6</sup>             | 72<br>(B 94%, L 52%, P 25%, ASCT 24%)                | 83% (CR 30%, VGPR 29%)    | Н 29%, К 60%             | 2                                |
|                                        |                                                      |                           |                          |                                  |

#### Same dosages as for multiple myeloma

- European Reference Network
  - for rare or low prevalence complex diseases
  - Oversign State (Second State) (Se
- 1. Kaufman, et al. Blood. 2017
- 2. Khouri, et al. Br J Haematol. 2019
- 3. Abeykoon, et al. Leukemia. 2019

- 4. Sanchorawala, et al. Blood. 2020
- 5. Chung, et al. Blood Adv. 2020
- 6. Lecumberri, et al. Amyloid 2020

- 7. Kimmich, et al. Blood 2020
- 8. Roussel, et al. Blood 2020
- 9. Milani, et al. Am J Hematol. 2020



## Daratumumab in relapsed/refractory patients - Heidelberg -



Gain 1q21 might be a neg. predictive marker for Daratumumab





Oktive Hematological Diseases (ERN EuroBloodNet) Kimmich, et al., *Blood* 2020



OS

24 27

15

6 5

11 10

OS

24 27 30

1

0

4 2

# Venetoclax – t(11;14) - predictive marker for therapy?!

#### Mayo Clinic study

12 patients with relapsed/refractory AL amyloidosis treated with Venetoclax

| t(11;14) positive | 11 patients |
|-------------------|-------------|
| t(11;14) negative | 1 patient   |

CR/VGPR

88%

#### Venetoclax - a BCL2 specific inhibitor



#### Multicentric international study

44 patients with relapsed/refractory AL amyloidosis treated with Venetoclax

| :(11;14) positive | 31 patients |
|-------------------|-------------|
| :(11;14) negative | 11 patients |

1

| CR/VGPR           |     |  |
|-------------------|-----|--|
| t(11;14) positive | 78% |  |
| t(11;14) negative | 30% |  |



Network Hematological Diseases (ERN EuroBloodNet) Premkumar et al. Blood Cancer J 2021

Sidiqi et al. Blood Cancer J 2020



# **Summary systemic AL Amyloidosis**

Most common form of MGCS

#### Diagnosis

- Rigorous evaluation at presentation (clone and organ)
- Distinguish AL from ATTR cardiac amyloidosis







Thursdavs Webinars

# Summary systemic AL Amyloidosis

- Clonal and organ biomarkers
  - established and validated for staging, prognosis and response, but NOT yet for hematologic progression
- Major developments in anti-clonal treatment (in PC AL)
  - Combination therapies are more powerful
  - Daratumumab is very effective
    - in non-nephrotic patients with low clonal burden
  - Cytogenetic results and other clonal markers are prognostic
- No Anti-Fibril / Amyloid therapy yet



Hematological Diseases (ERN EuroBloodNet) - Urgent need to better understand fibril formation



DF

# Mechanisms of antibody light chain misfolding in systemic AL amyloidosis





- **1.** AL amyloidosis as a rare and highly patient specific and complex disease
- 2. Anti-clonal treatment has to be risk adapted
- **3.** Genetic factors can influence treatment decisions

4. At least in difficult cases – ask experienced centers





#### Thanks to my colleagues and the funding sources



#### And thanks to our patients and their families





GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung

**DFG** Deutsche Forschungsgemeinschaft









#### XVIII International Symposium on Amyloidosis Heidelberg – Germany 4<sup>th</sup> - 8<sup>th</sup> September 2022