

Thursdays Webinars

When is molecular analysis useful in MDS?

Valeria Santini

Associate professor of Hematology MDS Unit- Hematology University of Florence ERN-EuroBloodNet City Firenze – Country Italy 26 November2020

Co-funded by the Health Programme

of the European Union

Network
Hematological

Advisory Boards : Novartis, Janssen, Celehen/BMS, Takeda , Pfizer, Menarini, Geron

Speaker at symposia: Novartis , Celgene/BMS, Geron

- ✓ 30-35min presentation (30 slides max) + 15 min Q&A session
- ✓ Microphones will be muted by host to avoid back noise
- ✓ Please, stop your video to improve internet conexion
- ✓ Send your questions during the presentation through the chat, they will be

gathered and answered after the presentations.

Thursdays Webinars

- 1. Understand the frequence and recurrence of somatic mutations In MDS
- 2. Understand the prognostic role of number and type of somatic mutations In MDS
- 3. Identify the cases in which the molecular study in MDS is absolutely necessary

Technique	Application
PCR	Increasing the amount of specific DNA in the sample
Array Comparative genomic hybridisation (aCGH)	Checking the whole genome for large deletions or duplications (copy number variation)
Real Time polymerase chain (Q-PCR) reaction	Controlled PCR that allows the amplification and quantification of the number of copies of a specific genetic region.
DNA sequencing (Sanger)	Checking for alterations in the order of bases in the genetic code
Next generation sequencing (NGS)	Large-scale DNA sequencing producing vast amounts of data in a single test.

What is the role of molecular analysis in MDS in 2020?

Prognostic importance of somatic mutations

Genetic predisposition

New therapeutic approaches

Novel Insights in pathophysiology (methylome, histone modifications)

Somatic Mutations in MDS are present in > 80% of cases «

Gene mutations have stereotyped positions

Hematological Diseases (ERN EuroBloodNet)

©2017

Somatic mutation evaluation in MDS

- **1.Help refining diagnosis (according to WHO for MDS with RS).**
- 2.Prompt to earlier intervention in presence of multiple (or prognostically negative) mutations
- **3.Prognostic established value in MDS with del5q**
- **4.Prognostic value in HSCT**
- **5.Identify inherited predisposition**
- 6.Clonal hemopoiesis -Diagnosis of uncertain cases/Prediction of AML progression
- 7. Predictive of HMA response (?)

8. Inclicate possibility of targeted therapy

Network Hematological Diseases (ERN EuroBloodNet)

complex diseases

The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia

Daniel A. Arber,¹ Attilio Orazi,² Robert Hasserjian,³ Jürgen Thiele,⁴ Michael J. Borowitz,⁵ Michelle M. Le Beau,⁶ Clara D. Bloomfield,⁷ Mario Cazzola,⁸ and James W. Vardiman⁹

The second
Myelodysplastic syndromes (MDS)
MDS with single lineage dysplasia
MDS with ring sideroblasts (MDS-RS)
MDS-RS and single lineage dysplasia
MDS-RS and multilineage dysplasia
MDS with multilineage dysplasia
MDS with excess blasts
MDS with isolated del(5q)
MDS, undassifiable
Provisional entity: Refractory cytopenia of childhood

 Network Hematological Diseases (ERN EuroBloodNet)

Table 15. PB and BM findings and cytogenetics of MDS

Name	Dysplastic Lineages	Cytopenias*	Ring sideroblasts as % of marrow erythroid elements	BM and PB blasts	Cytogenetics by conventional karyotype analysis
MDS with single lineage dysplasia (MDS-SLD)	1	1 or 2	<15%/<5%†	BM <5%, PB <1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with multilineage dysplasia (MDS-MLD)	2 or 3	1-3	<15%/<5%†	BM <5%, PB <1%, no Auer rods	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with ring sideroblasts (MDS-RS)		MDS w	ith ring sideroblas	sts	
MDS-RS with single lineage dysplasia (MDS-RS-SLD)	1	• RS	S > 15%,	r	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS-RS with multilineage dysplasia (MDS-RS-MLD)	2 or 3	• SF	3B1 and RS >5%	eage dysplasia	Any, unless fulfills all criteria for MDS with isolated del(5q)
MDS with isolated del(5q)	1-3	01	mineage/ materin	rods	del(5q) alone or with 1 additional abnormality except -7 or del (7q)
MDS with excess blasts (MDS-EB)					
MDS-EB-1	0-3	1-3	None or any	BM 5%-9% or PB 2%-4%, no Auer rods	Any
MDS-EB-2	0-3	1-3	None or any	BM 10%-19% or PB 5%-19% or Auer rods	Any
MDS, unclassifiable (MDS-U)					
with 1% blood blasts	1-3	1-3	None or any	BM <5%, PB = 1%,‡ no Auer rods	Any
with single lineage dysplasia and pancytopenia	1	3	None or any	BM <5%, PB <1%, no Auer rods	Any
based on defining cytogenetic abnormality	0	1-3	<15%§	BM <5%, PB <1%, no Auer rods	MDS-defining abnormality
Refractory cytopenia of childhood	1-3	1-3	None	BM <5%, PB <2%	Any

*Cytopenias defined as: hemoglobin, <10 g/dL; platelet count, <100 × 10⁹/L; and absolute neutrophil count, <1.8 × 10⁹/L. Rarely, MDS may present with mild anemia or thrombocytopenia above these levels. PB monocytes must be <1 × 10⁹/L

†If SF3B1 mutation is present.

‡One percent PB blasts must be recorded on at least 2 separate occasions.

§Cases with ≥15% ring sideroblasts by definition have significant erythroid dysplasia, and are classified as MDS-RS-SLD.

Inursoays webinars

Splicesome Mutations are very frequent in MDS

Genes	Mutations
SF3B1	Multiple
U2AF35 / U2AF1	Multiple
SRSF2	Multiple
ZRSR2	Multiple
LUC7LA	Single
PRPF8	Single
U2AF2	Multiple
SF1	Multiple
HCFC1	Single
SAP130	Single
SFRS6	Single
SON	Single
U2AF26	Single

85% myeloid neoplasias

60% in MDS

Splicesome Mutations

- _
- Heterozygous missense mutations at defined hotspots, leading to highly recurrent amino acid substitutions
- Mutations in the earlier phase
- Mutually exclusive of one another (?)

SF3B1 mutations in LR-MDS are independent good prognostic indicators

 Network Hematological Diseases (ERN EuroBloodNet) Rafael Bejar et al. Blood 2015;126:907

©2015 by American Society of Hematology

Somatic mutations in suspect of MDS: a help in diagnosis?

Network Hematological Diseases (ERN EuroBloodNet)

Dysplasia can be induced by other causes than MDS

Cytopenias without dysplasia may be tricking

and definite diagnosis is often a challenge

Network Hematological Diseases (ERN EuroBloodNet)

Prognostic value of the number of

somatic mutations

European Reference HaterlächvToetal. Leukemia 2014: 28:241-247 for rare or low prevalence complex diseases

> Network Hematological Diseases (ERN EuroBloodNet)

Papaemmanuil et al., Blood (2013)

Number of mutations predicts OS after ESAs (79 LR-MDS anemic pts)

European Reference Network for rare or low prevalence complex diseases

Kosmider O. et al Haematologica 2016; 101: e280-3.

 Network Hematological Diseases (ERN EuroBloodNet) Inursoays Webinars

OS According to Number of Mutations in nondel5q MDS Patients (#130)Treated with lenalidomide

• Higher number of mutations was significantly associated with shorter median OS (*P* = 0.0005)

Santini V et al Leukemia. 2020 Jul 13. doi: 10.1038/s41375-020-0961-3

Gene mutations in LR-MDS are independent prognostic indicators

Gene	HR (95% CI)	P value
ТР53	2.48 (1.60-3.84)	<0.001
EZH2	2.13 (1.36-3.33)	<0.001
ETV6	2.04 (1.08-3,86)	0.029
RUNX1	1.47 (1.01-2.25	0.047
ASXL1	1.36 (1.0-1.89)	0.049

Bejar R et al. N Engl J Med. 2011;364(26):2496-506

Thursdays Webinars

IPSS-R integrated model with molecular variables (83 pts)

Variable	Hazard Katio	95% CI	<i>p</i> value	Score
IPSS-R				
Intermediate	1.45	0.56-3.77	0.45	0.5
High/Very high	4.66	2.01-10.84	< 0.001	1.5
TP53	3.12	1.3-7.49	0.011	1
Mutations 3 or more	2.51	1.32-4.76	0.005	1

Network Hematological

Diseases (ERN EuroBloodNet)

Mutations of CBL, IDH2, ASXL1, DNMT3A, and TP53

complex diseases • Network Hematological Diseases (ERN EuroBloodNet)

Hou HA et al; Blood Cancer J. 2018 Apr 4;8(4):39.

Prognostic Models beyond IPSS-R

for rare or low prevalence complex diseases

 Network Hematological Diseases (ERN EuroBloodNet) Haferlach et al., Leukemia, 2014 Thursdays Webinars

IWG molecular study

IW	IWG-MDS cohort (N=3324)						
Characteristic	No. of cases (%)	Median (1Q - 3Q)					
Gender Male Female	2005 (60%) 1319 (40%)	:					
Age at diagnosis Missing data	85 (2.6%)	71 (63 - 78) -					
Type of MDS De-novo Therapy-related Secondary Missing data	2855 (86%) 229 (7%) 51 (1%) 189 (6%)	- - -					
WHO 2016 classification ⁴ MDS MDS-del5q MDS-SLD/MLD MDS-RS-SLD/MLD MDS-EB1 MDS-EB2 MDS-U AML AML-MRC AML MDS/MPN CMML aCML MDS/MPN-U MDS/MPN-U MDS/MPN-U MDS/MPN-RS-T Other Missing data	142 (4.3%) 914 (27.5%) 460 (13.8%) 451 (13.6%) 429 (12.9%) 92 (2.8%) 103 (3%) 64 (2%) 425 (12.8%) 46 (1.4%) 50 (1.5%) 42 (1.3%) 11 (0.3%) 95 (2.9%)						
Cytogenetics IPSS-R Very-good Good Int Poor Very-poor Missing data	125 (3.8%) 1992 (59.9%) 421 (12.7%) 149 (4.5%) 254 (7.6%) 383 (11.5%)						
IPSS-R risk group Very-good Good Int Poor Very-poor Missing data	372 (14.6%) 1106 (33.3%) 630 (19%) 448 (13.5%) 372 (11.2%) 282 (8.5%)						
Blood counts Hemoglobin (g/dL) Platelets (10%L) ANC (10%L)	-	9.7 (8.6 - 11.2) 123 (65 - 229) 2 (1 - 3.7)					
Bone Marrow Blasts % Missing data	108 (3.2%)	3 (1 - 8)					
Outcome Median follow-up (years) ⁸ Missing OS data Missing AML data	152 (4.5%) 163 (4.9%)	3.44 - -					

for rare or low prevalence complex diseases

IWG-PM Molecular Status Study Project

2019 update

Prognostic Impact

Table 1. Summary of u	inver matacions in myer	ouysplastic synutomes (in	103)			
Mutated	Associated	MDS	Other	Frequency in	Effect on	Application
genes	phenotypes	types	disease	MDS (%)	outcome	to treatment
RNA splicing				60–70		None
(mutually exclusive)						
SF3B1	Ring sideroblasts	RARS, RCMD-RS	RARS-T	15–30	Good	
SRSF2		RCMD, RAEB	CMML	10–20	Poor	
U2AF1		RCMD, RAEB	CMML	5–10	Poor	
ZRSF2		RCMD, RAEB	CMML	5–10	None	
DNA methylation				40–50		DNA methyltransferase
(TET2 and IDH1/2						inhibitors
are exclusive)						
TET2	Myeloid dominancy	All MDS, normal karvotype	CMML	20–30	None	IDH1/2 inhibitors
IDH1/2		RCMD, RAEB	CMML	5	Poor (IDH2)	
DNMT3A		All MDS	AML	10	None	
Chromatin modification				20–30		Deacetylase inhibitors
ASXL1		RCMD, RAEB	CMML	15–20	Poor	
EZH2	-7/7q-	RCMD, RAEB	CMML	5	Poor	
BCOR		RCMD, RAEB		5	Poor	
Transcriptional factor				20-30		None
RUNX1	Thrombocytopenia	RCMD, RAEB	CMML, AML	10	Very poor	
CEBPA		RCMD, RAEB	AML	<5	None-poor	
ETV6		RCMD, RAEB		<5	Poor	
Signal transduction				20–30		Kinase inhibitors
(mutually exclusive)						
NRAS/KRAS		All MDS	JMML, CMML	10	Poor	
CBL		All MDS	JMML, CMML	5	Poor	
JAK2	Megakaryocytosis	All MDS	RARS-T, MPN	5	None	JAK inhibitors
NF1		All MDS	JMML	<5	Poor	
FLT3		All MDS	AML	<5	Poor	FLT3 inhibitors
Cohesin complex				10		None
(mutually exclusive)						
STAG2		RCMD, RAEB	AML, CMML	5–10	None-poor	
TP53	Complex karyotype	RAEB, isolated del(5q)		10	Very poor	None

Table 1. Summary of driver mutations in myelodysplastic syndromes (MDS)

for rare or low prevalence complex diseases

Network Hematological

Hematological Diseases (ERN EuroBloodNet) Bejar R et al. N Englst Med 2014 binars

Prognostic Impact

Fable 1 Somatic mutatio	ns in MDS.							
Gene function	Gene symbol	Gene name	location	Mutation; effect	Prognostic implication	Protein function	Frequency %	Common attributes
Signaling	NRAS	Neuroblastoma RAS viral (v-ras) oncogene homolog	1p13.2	Missense; activation	Poor (? Increased risk of AMI. evolution)	GTPase signal transducer controlling cell growth	~ 10	Frequent in CMML, increased risk of leukemic transformation
	FLT3-ITD	Fms-related tyrosine kinase 3	13q12		Unclear	FMS-like receptor tyrosine kinase, class III	~ 2	Uncommon in MDS, increased frequency in MDS progressing to AMI.
	CBL	CBL proto- oncogene, E3 ubiquitin pritein ligase	11q23.3	Missense; inactivation possibly dominant negative	Unclear	Tyrosone kinase- associated ubiquitin ligase	~ 1	Associated with UPD 11q; frequent in CMML and MD/ MPN overlap
	јак2	Januse kinase 2 V617F	9p24	Somatic mutation	Negative	Tyrosine kinases that are associated with cytokine receptors	~5MDS, ~50% MDS/ MPN	Increased platelet count in MDS, megakaryocytic proliferation, RARS-T, and AML; associated with a subgroup of del/Sa31)
	KIT	V-kit Hardy- Zuckerman 4 feline sarcoma viral oncogene	4q11- 12	Missense; activation	unclear	Receptor tyrosine kinase	~ 1	High risk, involved in leukemic transformation
Transcription factors	RUNX1	Runt-related transcription factor 1	21q22.3	Missense in the runt domain; dominant negative. Nonsense/ indel/splice site distal; nonfunctional	Negative	Member of transcription protein complex	~ 15	Thrombocytopenia, high risk MDS, common in t-MDS, increased risk of AMI.
	TP53	Tumor protein p53	17p13.1	Missense/indel; nonfunctional	Negative	Multiple: DNA repair, apoptosis	~ 10	Asspciated with complex cytogenetics and isolated 5q-, poor prognosis
	ETV6	Ets variant 6	12p13	Missense/indel; nonfunctional	Negative	ETS family transcription factor	~ 2	Heterozygous mutations alter protein that is incapable of repressing transcription and shows dominant negative effects
	CEBPA	CCAAT/enhancer- binding protein (C/ EBP), alpha	19q13.1	Indel/nonsense; nonfunctional	Unclear; favorable in AML when 2 mutations are present	Basic leucine zipper (bZIP) transcription factor; cell cycle regulation	~1-4	Familial predisposition to AML and MDS
	NPM1	Nucleophosmin (nucleolar phosphoprotein B23. numatrin)	5q35,1	Indel; cytoplasmic localization, p53 inactivation	Unclear	Phosphoprotein, nuclear and cytoplasmic	~2	Ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation
	BCOR	BCL6 Corepressor, a POZ/zinc finger transcription repressor	Xp11.4	Subclonal driver mutation	Negative	A transcription repressor; may influence apoptosis	<5	Associated with RCMD or RAEB
	GATA2	GATA binding protein 2	3q21.3	Somatic mutation	Unclear;? risk of progression to AMI.	Zinc-finger transcription factors; development and proliferation of hematopoietic cells	<5	Germline mutations causes familial predisposition to AML and MDS; monocytopenia
Epigenetic modifiers	TET2	Tet methylcytosine deoxygenase 2	4q24	Nonsense/indel throughout; non- functional, missense it catalytic domain; nonfunctional	Unclear; possibly positive	Alpha ketoglutarate- dependent dioxygenase	~ 20	UPD or microdeletion in 4q associated with advanced age and normal karyotype
	IDH1	Isicitrate dehydrogenase 1 (NADP+), soluble	2q33.3	Missense; altered function	Negative	NADP-dependent isocitrate dehydrogenase	~ 2	Mutually exclusive to TET2 mutations, associated with normal karyotype, IDH 1
	IDH2	Isocitrate dehydrogenase 2 (NADP+), mitochondrial	15q26.1	Missense; altered function	None	NADP-dependent isocitrate dehydrogenase	~ 2	mutations impact adverse prognosis
	DNMT3A	DNA (cytosine-5-)- methyltransferase 3 alpha	2p23	Missense; dominant negative	Negative	DNA methyltransferase	~ 8	Not associated with normal karyotype, increased risk of AMI

for rare or low prevalence complex diseases

Network Hematological Diseases (ERN EuroBloodNet) Mutations of myelodysplastic syndromes (MDS): An update, Ganguly et al, Mutations Researce 8016 rs

Prognostic Impact

Table 1 (Cont	inued)							
Gene functi	on Gene symbol	Gene name	location	Mutation; effect	Prognostic implication	Protein function	Frequency %	Common attributes
Epigenetic modifiers	TET2	Tet methylcytosine deoxygenase 2	4q24	Nonsense/indel throughout; non- functional, missense in catalytic domain; nonfunctional	Unclear; possibly positive	Alpha ketoglutarate- dependent dioxygenase	~ 20	UPD or microdeletion in 4q associated with advanced age and normal karyotype
	IDH1	Isicitrate dehydrogenase 1 (NADP+), soluble	2q33,3	Missense; altered function	Negative	NADP-dependent isocitrate dehydrogenase	~ 2	Mutually exclusive to TET2 mutations, associated with normal karyotype, IDH 1
	IDH2	Isocitrate dehydrogenase 2 (NADP+), mitochondrial	15q26.1	Missense; altered function	None	NADP-dependent isocitrate dehydrogenase	~ 2	mutations impact adverse prognosis
	DNMT3A	DNA (cytosine-5-)- methyltransferase 3 alpha	2р23	Missense; dominant negative	Negative	DNA methyltransferase	~ 8	Not associated with normal karyotype, increased risk of AMI.
Histone modificat	ASXL1 tion	Additional sex combs like 1 (Drosophila)	20q11	Nonsense/indel; dominant negative or activation	Adverse	Chromatin-binding protein	~ 10–20	Excess of blasts, intermediate risk IPSS, shorter OS, increased risk of AML
	EZH2	Enhancer of zeste homolog 2 (Drosophila)	7q35- 36	Missense in the SET domain; non-functional nonsense/indel; nonfunctional	Negative	Histone-methylating protein	~ 7	UPD or microdeletion in 7q, worse outcome in low-risk MDS
	SF3B1	Splicing factor 3b, subunit 1, 155 kDa	2q33.1	Missense; possible dominant negative or gain of function	Favorable	RNA-splicing factor 3b subunit 1, part of U2	~ 20	Common in RARS-RARS-T, coexistence with DNMT3A
RNA splici	ng U2AF1	U2small nuclear RNA auxillary factor 1	21q22.3	Missense; possibly dominant negative or gain of function	Unclear	U2 small nuclear RN/ splicing factor	~ 7	High risk, enriched in patients with del20q11 and ASXL1 mutations
	SRSF2	Serine/arginine- rich splicing factor 2	17q25.1	Missense; possible dominant negative or gain of function	Negative	Serine/arginine-rich pre RNA splicing factor	~ 12	Male gender, advanced age and coexistence of RUNX1, IDH1, ASXL1 mutations
	ZRSR2	Zinc finger (CCCG type), RNA- binding motif and serine/argentine rich 2	Xp22.1	Nonsense/indel/splice sites; non-functional	Unclear	Zinc finger RNA- binding associated with U2	~ 3	Male predilection, isolated neutropenia and clustering with TET2 mutations
	PRPF8	Pre-mRNA processing factor 8	17p13.3	Missense/Deletions; defects in proof-readin functions	Unclear (poor g in AML)	Catalytic step II in pre-mRNA splicing; sister chromatid	~1-4	Associated with ring sideroblast phenotype in common with SRF3B1;
Cohesin complex	STAG2	Cohesin complex factor	Xq25	Indel; loss of function; subclonal mutation	Negative	Regulates separation of sister chromatids during cell division	1-10%	Associated with RCMD or RAEB
Other Mutation	SETBP1 ns	SET binding protein 1	18q21.1	Missense in SKI- homologous domain, Impairs degrdation	Negative; high risk of leukemic evolution	Binds SET, unclear function	~2-5	Co-occur with –ASXL1 and BL mutations, 7/del(7q); mutual exclusiveness to TP53

for rare or low prevalence complex diseases

Mutations of myelodysplastic syndromes (MDS): An update, Ganguly et al, Mutations Researcy 2016ars

Evaluation of Gene Mutations

_

Thursdays Webinars

In MDS Sequential Cases 2018 in MDS UNIT Florence

- 75% of MDS patients carried at least 1 mutation
- Only 8% of MDS patients showed ≥ 3 mutations, consistent with the majority of cases belonging to IPSS-R higher risk and with recent diagnosis

Number of Mutations: Prognostic Impact on OS

Characteristics	n	Median (months)	Р
TET2 Wild type Mutated	62 19	48 49	0.655
SRSF2 Wild type Mutated	64 17	49 35	0.212
ASXL1 Wild type Mutated	65 16	49 43	0.389
SF3B1 Wild type Mutated	68 13	49 35	0.892
DNMT3A Wild type Mutated	68 13	49 35	0.592
RUNX1 Wild type Mutated	73 8	49 12	0.001
TP53 Wild type Mutated	75 6	48 49	0.844
Number of mutations 0 -1 ≥ 2	51 30	49 25	0.03

European Reference Network Brogiesetcal, unpublished

Hematological Diseases (ERN EuroBloodNet)

Prognostic Impact of single mutations on OS

Characteristics	n	Median (months)	Р
TET2 Wild type Mutated	62 19	48 49	0.655
SRSF2 Wild type Mutated	64 17	49 35	0.212
ASXL1 Wild type Mutated	65 16	49 43	0.389
SF3B1 Wild type Mutated	68 13	49 35	0.892
DNMT3A Wild type Mutated	68 13	49 35	0.592
RUNX1 Wild type Mutated	73 8	49 12	0.001
TP53 Wild type Mutated	75 6	48 49	0.844
Number of mutations $0 \stackrel{-1}{_{\geq} 2}$	51 30	49 25	0.03

 DNMT3 mutations in MDS patients with normal karyotype were associated with a European Significantly worst OS Network
Ketwork
Ketwork

Leukemia. 2019 Jan 11. doi: 10.1038/s41375-018-0351-2. [Epub ahead of print]

TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups.

Haase D¹, Stevenson KE², Neuberg D², Maciejewski JP³, Nazha A³, Sekeres MA³, Ebert BL², Garcia-Manero G⁴, Haferlach C⁵, Haferlach T⁵, Kern W⁵, Ogawa S⁶, Nagata Y³, Yoshida K⁶, Graubert TA⁷, Walter MJ⁸, List AF⁹, Komrokji RS⁹, Padron E⁹, Sallman D⁹, Papaemmanuil E¹⁰, Campbell PJ¹¹, Savona MR¹², Seegmiller A¹², Adès L¹³, Fenaux P¹³, Shih LY¹⁴, Bowen D¹⁵, Groves MJ¹⁶, Tauro S¹⁶, Fontenay M¹⁷, Kosmider O¹⁷, Bar-Natan M¹⁸, Steensma D², Stone R², Heuser M¹⁹, Thol F¹⁹, Cazzola M²⁰, Malcovati L²⁰, Karsan A²¹, Ganster C¹, Hellström-Lindberg E²², Boultwood J²³. Pellagatti A²³. Santini V²⁴. Quek L^{25,26}, Vvas P^{25,26}, Tüchler H²⁷, Greenberg PL²⁸, Bejar R²⁹; International Working Group for MDS Molecular Prognostic Committee.

INELMOLK

for rare or low prevalence complex diseases

③ Network

Hematological Diseases (ERN EuroBloodNet)

High Complexity Status.

N:359

for rare or low prevalence complex diseases Retwork Hematological Diseases (ERN EuroBloodNet)

European Reference

etwork

TP53 Mutations and overall survival

TP3 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups, Haase et al, Leukemia 2019

European Reference Network for rare or low prevalence complex diseases

TP53 allelic state shapes clinical outcomes

Thursdays Webinars

Hematological

③ Network

Diseases (ERN EuroBloodNet)

TP53 allelic state influences response to therapy: **LEN in lower risk MDS**

European leference letwork for rare or low prevalence complex diseases

> ③ Network Hematological Diseases (ERN EuroBloodNet)

Bernard E, et al. Nat Med. 2020 Oct;26(10):1549-1556

Lenalidomide does not improve OS in del(5q) MDS with TP53mut

Martin Jädersten et al. JCO 2011;29:1971-1979

Network Hematological Diseases (ERN EuroBloodNet)

Thursdays Webinars

Lenalidomide does not improve OS in del(5q) MDS with TP53mut

European Reference Network for rare or low prevalence complex diseases

Christian Scharenberg et al. Haematologica 2017;102:498-508.

 Network Hematological Diseases (ERN EuroBloodNet)

•

SF3B1 mutations are not a good prognostic factor In MDS with isolated del5q

Reference Network for rare or low prevalence complex diseases

> Network Hematological Diseases (ERN EuroBloodNet)

Meggendorfer et al . Haematologica 2017 ; 102(9):1502-1510

SF3B1 mutations are not a good prognostic factor In MDS with isolated del5q

Network

for rare or low prevalence complex diseases

 Network Hematological Diseases (ERN EuroBloodNet) Meggendorfer et al . Haematologica 2017 ; 102(9):1502-1510nars

Survival by Adverse Mutation Status

TP53														18
TET2														11
DNMT3A														16

 Network Hematological Diseases (ERN EuroBloodNet)

Relationship between type of oncogenic mutations and overall survival of MDS receiving allo-HSCT

Diseases (ERN EuroBloodNet)

Thursdays Webinars

complex diseases

Hematological Diseases (ERN EuroBloodNet)

WHO 2016 classification of myeloid neoplasms with germ line predisposition

Myeloid neoplasms with germ line predisposition without a preexisting disorder or organ dysfunction AML with germ line CEBPA mutation Myeloid neoplasms with germ line DDX41 mutation* Myeloid neoplasms with germ line predisposition and preexisting platelet disorders Myeloid neoplasms with germ line RUNX1 mutation* Myeloid neoplasms with germ line ANKRD26 mutation* Myeloid neoplasms with germ line ETV6 mutation* Myeloid neoplasms with germ line predisposition and other organ dysfunction Myeloid neoplasms with germ line GATA2 mutation Myeloid neoplasms associated with BM failure syndromes Myeloid neoplasms associated with telomere biology disorders JMML associated with neurofibromatosis, Noonan syndrome or Noonan syndrome-like disorders Myeloid neoplasms associated with Down syndrome*

*Lymphoid neoplasms also reported.

Arber et al Blood 2016 : 127:239415

Patient with de novo MDS at a younger age (< 50yrs)

- Patient with MDS and familial history of AML
- Patient with MDS and peculiar extra hematological symptoms:
- **1. Perform an accurate family and personal history**
- 2. Search for signs and symptoms of congenital syndromes
- 3. Perform mutational analysis for genes involved in inherited predisposition
- 4. Select accurately HSCT donor (completely avoid related matched donor?) Slow engraftment, donor derived leukemia

5. Familial genetic counseling (anticipation of onset Reference through generations) Thursdays Webinars

Hematological Diseases (ERN EuroBloodNet) We decided to analyze a group of patients with "juvenile MDS" (between 40 and 50 years) with the following protocol:

□ WES on bone marrow (with variant filtering and analysis of CNVs)

□ lc-WGS on liquid biopsy (to identify rearrangements not visible with karyotype)

□ WES on saliva to try to detect "congenital driver variants"

 Network Hematological Diseases (ERN EuroBloodNet)

20% of young MDS patients tested carry germline and predisposing mutations

 Network Hematological Diseases (ERN EuroBloodNet)

Somatic mutations in suspect of MDS: a help in diagnosis?

Network Hematological Diseases (ERN EuroBloodNet)

Dysplasia can be induced by other causes than MDS

Cytopenias without dysplasia may be tricking

and definite diagnosis is often a challenge

Network Hematological Diseases (ERN EuroBloodNet)

ICUS idiopathic cytopenia of unknown significance

IDUS

idiopathic dysplasia of unknown significance

CHIP/ARCH clonal hemopoiesis of indeterminate potential/ age related clonal hemopoiesis

CCUS clonal cytopenia of unknown significance

Network Hematological Diseases (ERN EuroBloodNet)

- Clonality defined by presence of MDS-associated genes:

DNMT3A, ASXL1, TET2, (JAK2) with loss of function

- Little propensity to develop MDS (0,5-1% /year)
- Present in 15% of persons aged > 70yrs

Triggered by (?) :

Stochastic event Environment (smoke, radiation, chemotherapy, inflammation) Hereditary/predisposition conditions

for rare or low prevalence complex diseases Network

Hematological Diseases (ERN EuroBloodNet)

CHIP correlates with coronary heart disease

for rare or low prevalence complex diseases

 Network Hematological Diseases (ERN EuroBloodNet) Jaiswal S et al NEJM June 21, 2017

	ICUS	ARCH	СНІР	CCUS	Lower Risk MDS	Higher Risk MDS
Clonality	-	+	+	+	+	+
Dysplasia	-	-	-	-	+	+
Cytopenia	+	-	-	+	+	+
BM Blast %	<5%	<5%	<5%	<5%	<5%	<19%
AML Overall Risk	Very low	Very low	Very low but cardiopathy	Low /intermediat e	Low	High
Median Num of mutations	0	1	1	>1<2	>2	>2
Typical VAF	-	1-10%	9-12% (>10)	30-40% (40)	>50%	>50%
Types of mutations European Reference Network		DNMT3A, TET2,ASXL1, JAK2, TP53	DNMT3A, TET2,ASXL1, JAK2, TP53	TET2, DNMT3A,ASXL1, SRSF2, TP53 <mark>Later</mark> TET2, SRSF2, ASXL1, U2AF1, DNMT3A	SF3B1, TE SRSF2, DN and all the	T2, ASXL1, IMT3A less frequen

* Network Hematological Diseases (ERN EuroBloodNet) Modified from Steensma et al, Blood 2015 and Bejar R Leukemia, 2017 online Thursdays Webinars

Somatic mutations can confirm a diagnosis of MDS IF :

Present in a young patient with isolated cytopenia

Present with elevated VAF in an elderly patient, mostly if different than those found in CHIP

Network
 Hematological
 Diseases (ERN EuroBloodNet)

Somatic mutations can predict response to therapy?

Network Hematological Diseases (ERN EuroBloodNet)

Proposed Biomarkers for HMA response

Molecular predictors

Responses rates are higher in the subset of TET2^{mut} and DNMT3A^{mut} patients

 Table 4
 Multivariate analysis (logistic regression) of overall response according to TET2 status, cytogenetics and previous therapy

Including SD wit	h HI	Excluding SD with HI			
OR (95% CI)	Р	OR (95% CI)	Р		
5.92 (1.05–33.33)	0.044	5.92 (1.43–24.39)	0.014		
0.24 (0.06–0.98) 0.33 (0.11–0.95)	0.048 0.040	2.41 (0.60–9.71) 2.11 (0.68–6.45)	0.22 0.19		
1.56 (0.47–5.15)	0.47	0.47 (0.13–1.65)	0.24		
	Including SD with OR (95% Cl) 5.92 (1.05–33.33) 0.24 (0.06–0.98) 0.33 (0.11–0.95) 1.56 (0.47–5.15)	Including SD with HI OR (95% Cl) P 5.92 (1.05–33.33) 0.044 0.24 (0.06–0.98) 0.048 0.33 (0.11–0.95) 0.040 1.56 (0.47–5.15) 0.47	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

Abbreviations: CI, confidence interval; HI, hematological improvement; OR, odds ratio; SD, stable disease; TET2, ten-eleven-translocation 2. ^aCompared with good risk.

Hematological Diseases (ERN EuroBloodNet)

V	lutated gene*	Unadjusted OR (95% CI)	P value	Adjusted† OR (95% Cl)	P value
V	lutations with VAF ≥10%				
	TET2-mut vs TET2-WT	1.99 (1.05, 3.80)	.036	1.98 (1.02, 3.85)	.044
	ASXL-mut vs ASXL1-WT	0.69 (0.40, 1.20)	.19	0.68 (0.38, 1.19)	.17
	TET2-mut + ASXL1-WT	3.65 (1.38, 9.67)	.009	3.64 (1.35, 9.79)	.011
	vs other				
	TET2-mut + ASXL1-WT	3.40 (1.24, 9.35)	.011	3.36 (1.20, 9.38)	.013
	vs both WT				
	TET2-WT + ASXL1-mut	0.77 (0.41, 1.46)	.35	0.80 (0.39, 1.46)	.39
	vs both WT				
	TET2-mut + ASXL1-mut	1.11 (0.48, 2.61)	.62	1.07 (0.44, 2.61)	.59
	vs both WT				
	CBL-mut vs CBL-WT	0.27 (0.06, 1.29)	.10	0.28 (0.06, 1.40)	.12

Feature	Category
Platelets, x10 ⁹ /L	≥100
	< 100
WBC , x10 ⁹ /L	<3.0
	≥3.0
TET2/DNMT3A mutation	One or both genes mutated
	Both genes wild type

Mutations of TP53, PTPN11, and ASXL1 affected OS but not TET2^{mut}

ASXL1 mutations

Feature	Category
Cytogenetic Risk	Good Intermediate or no growth Poor
ASXL1	Wild type Mutated
Hemoglobin, g/dL	≥10 <10
Age	< 60 ≥ 60
SF3B1	Mutated Wild type

Itzykson et al, Leukemia 2011; Bejar et al, Blood 2014; Traina F et al, Leukemia 2013 Webinars

Molecular predictors of AZA response

(elaborated with artificial intelligence)

433 MDS patients

Possible in 30% of cases

Association Rules for Resistance to HMA
ASXL1, NF1
ASXL1, EZH2, TET2
ASXL1, EZH2, RUNX1
EZH2, SRSF2, TET2
ASXL1, EZH2, SRSF2
ASXL1, RUNX1, SRSF2
ASXL1, TET2, SRSF2
ASXL1, BCOR, RUNX1

Thursdays Webinars

Nazha et al, JCO Prec Oncol 2019

 Network Hematological Diseases (ERN EuroBloodNet) None of the most frequently mutated genes in 🥙

MDS correlates with response to AZA (77 cases)

• 39% of mutated genes involved in Epigenetic regulation

Thursdays Webinars

Masala e et al, submitted 2020

Network for rare or low prevalence complex diseases

European

leference

 Network Hematological Diseases (ERN EuroBloodNet)

In CMML Mutational profiles do not correlate with response to decitabine

Hematological Diseases (ERN EuroBloodNet) Meldi et al 2015; Santini et al 2017

Myelodysplastic syndromes with ring sideroblasts (MDS-RS)

SF3B1 mutated Cumulative Probability of Survival 1 .2 .3 .4 .5 .6 .7 .8 .5 SF3B1 unmutated P=.003 0 0 24 72 96 120 144 168 192 216 240 264 288 48 Time (months)

European Reference etwork for rare or low prevalence complex diseases

> Network Hematological Diseases (ERN EuroBloodNet)

Ringed sideroblasts (RS) are erythroblasts in which iron accumulates in the mitochondria in the form of mitochondrial ferritin.

MDS-RS are characterized by ineffective erythropoiesis, severe anemia, transfusion dependency but relatively low risk of leukemic transformation.

>90% of MDS-RS patients have somatic heterozygous mutations in SF3B1

Hepcidin is lower in MDS-RS vs other MDS subtypes

SF3B1 is associated with better overall survival

Thursdays Webinars

Malcovati L et al Blood. 2011 Dec 8;118(24):6239-46.

Luspatercept induces Transfusion independence in *RS(+)* LR-MDS pts

GDF11 Modified Extracellular Domain of ActRIIB Fc Domain of human IgG₁ Antibody

When assessed during the entire treatment period, a greater proportion of luspatercept-treated patients achieved RBC-TI \geq 8 weeks compared with placebo than previously reported (37.9% of patients receiving luspatercept achieved RBC-TI \geq 8 weeks during Weeks 1–24 of treatment vs 13.2% of placebo-treated patients; P < 0.0001)¹

Luspatercept has been approved by FDA and EMA in 2020 for TD MDS-RS

Fenaux et al, N Engl J Med. 2020 Jan 9;382(2):140-151.

Network Hematological Diseases (ERN EuroBloodNet)

Lenalidomide in non-del5q MDS induces RBC-TI

European Reference Network for rare or low prevalence complex diseases

> Network Hematological Diseases (ERN EuroBloodNet)

Santini V J Clin Oncol. 2016 Sep 1;34(25):2988-96ebinars

ASXL1 mutation is associated with lower RBC-TI ≥ 8 Weeks Response in LEN-treated non-del 5q Patients DNMT3A and EZH2 trend to better response

Hematological Diseases (ERN EuroBloodNet) Santini V et al, manuscript in preparatione binars

OS According to DNMT3A Mutation

Len vs PBO

- DNMT3A mutations were not significantly associated with different OS (P = 0.3228) in patients treated with placebo
- DNMT3A mutant patients had a trend for improved OS with LEN treatment compared with placebo (P = 0.123)

Isocitrate Dehydrogenase (IDH) Mutations in MDS

- Somatic *IDH1* and *IDH2* mutations result in accumulation of oncometabolite **2-HG**
 - → epigenetic changes, impaired cellular differentiation
- mIDH identified in multiple solid and hematologic tumors, rare in MDS, more frequent in AML

	mIDH1	mIDH2
% of MDS patients	~5%	~5–10%

- Enasidenib (AG-221): inhibitor of m*IDH2*
- Ivosidenib (AG-120): inhibitor of mIDH1

Network Hematological Diseases (ERN EuroBloodNet)

(.....and few MDS)

	AG-221 (Enasedinib)	AG-120 (Ivosedinib)
Clinical trial	NCT01915498. (Stein et al- Blood. 2017;130(6):722-731)	NCT02074839.(DiNardo et al NEJM June 2, 2018 DOI: 10.1056/NEJMoa1716984), Pollyea ASCO 2018
Pts dosed	258	239
Overall Response Rate	40.3%	39.1%

ONGOING:

O Net Herr

HMA-naïve high risk MDS enasidenib in combination with azacitidine (NCT03383575).

Network for rare of complex Network Hematolo Diseases	ork r low prevalence diseases gical (ERN EuroBloodNet)	17 MDS pts 50% ORR 21% CR		Thursdays Webinars
Euroj Refei	Toxicity	-Indirect hyperbilirubinemia (inhibiting UGT1A1) -nausea -leukocytosis	-QT prolongation -diarrhea -nausea -leukocytosis	
	Duration of response if CR	8.8 months	10.1 months	
	Overall survival	9.3 months	9.0 months	
	Median time to response	1.9 months	1.9 months	

A single-arm phase II multicenter study of IDH1 (AG 120) inhibitor

in patients with IDH1 mutated myelodysplastic syndrome

Cohort A: Higher risk MDS (IPSS int-2, high) without response (CR, PR, marrow CR, stable disease with HI) after at least 6 cycles of azacitidine or relapse after a response.

but without overt progression (defined by at least doubling of marrow blasts, compared to pre azacitidine bone marrow, or by AML progression beyond 30% blasts)

•Cohort B: Untreated higher risk MDS (IPSS int-2, high) without life threatening cytopenias (ie ANC < 500/mm3 or any recent severe infection and/ or platelets below 30,000/mm3 and any bleeding symptom). Azacitidine will be added after 3 cycles of AG 120 in the absence of response. Azacitidine will be given at the standard dose of 75mg/m2 over 7 days (7 consecutive days, 4-10; or 2+5 (i.e., days 4-5 and 8-12) as a subcutaneous injection or intravenous •Cohort C: Lower risk MDS with anemia resistant to erythropoietic stimulating agents (primary or secondary resistance)

Hematological Diseases (ERN EuroBloodNet)

Phase 1b/2 Combination Study of APR-246 and Azacitidine (AZA) in Patients with *TP53* Mutant Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML) Treatment Duration and Response

Diseases (ERN EuroBloo

complex diseases
Network
Hematological
Saliman D t al, ASH 2018

Į.

bjh guideline

Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia

Laura Palomo,¹ Mariam Ibáñez,^{2,3,4} María Abáigar,⁵ Iria Vázquez,^{6,7} Sara Álvarez,⁸ Marta Cabezón,⁹ Bárbara Tazón-Vega,^{10,11} Inmaculada Rapado,^{12,13,14} Francisco Fuster-Tormo,¹ José Cervera,^{2,3,15} Rocío Benito,⁵ María J. Larrayoz,^{6,7} Juan C. Cigudosa,⁸ Lurdes Zamora,⁹ David Valcárcel,^{10,11} María T. Cedena,^{12,13,14} Pamela Acha,¹ Jesús M. Hernández-Sánchez,^{5,16} Marta Fernández-Mercado,^{6,17,18} Guillermo Sanz,^{2,3} Jesús M. Hernández-Rivas,^{5,16,19} María J. Calasanz,^{6,7} Francesc Solé,¹ Esperanza Such,^{2,3,4} On behalf of the Spanish Group of MDS (GESMD)

 Network Hematological Diseases (ERN EuroBloodNet) Thursdays Webinars

università degli studi FIRENZE

DIPARTIMENTO DI MEDICINA SPERIMENTALE E CLINICA

MDS UNIT

Network Hematological Diseases (ERN EuroBloodNet)

Thursdays Webinars

Thursdays Webinars

- 1. Molecular analysis in MDS can refine diagnosis (in MDS-RS with < 15% RS)
- Molecular analysis with NGS at diagnosis can improve the prognostic stratification (number of mutations and some specific mutations – biallelic TP53, ASXL1)
- 3. The presence of a actionable somatic mutations may help to select a therapy, expecially in second line treatment

Network Hematological Diseases (ERN EuroBloodNet)